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Tables of Maximally Flat
Impedance-Transforming Networks
of Low-Pass-Filter Form

In previous papers, Szentirmai [1] and
Matthaei [2] present design theory for syn-
thesis of lumped-element Chebyshev imped-
ance transforming networks. In the paper of
Matthaei [2] extensive tables of element
values for the impedance-transforming net-
works are also presented. These networks
are of low-pass ladder form consisting of
series inductances and shunt capacitances.
They give impedance match in the Cheby-
shev sense between resistor terminations of
arbitrary ratio (designs with resistor termi-
nation ratios from 1.5 to 50 are tabulated).
The responses of these networks have mod-
erately high attenuation at dc (the amount
of attenuation depends on the termination
ratio); their attenuation falls to a very low
level in the impedance-matching band, and
then rises monotonically and steeply above
the operating band in a manner typical of
low-pass filters. The impedance-transform-
ing networks can be realized in lumped-ele-
ment form for low-frequency applications,
and in semi-lumped-element form (using
short sections of transmission line of alter-
nating high and low impedances) at micro-
wave frequencies.

In this correspondence the design tables
of Matthaei are extended to include im-
pedance-matching filter designs having a
maximally-flat transmission characteristic
in the matching band. Figure 1 shows the
general form of the impedance-transforming
structures under consideration. It should be
noted that the structure is of the form of a
conventional low-pass filter structure. The
main difference between these structures
and those of conventional low-pass filters is
that conventional low-pass filters have termi-
nating resistors of equal (or nearly equal)
sizes at each end. For the filters discussed
here, the terminating resistors may be of
radically different size, which means there
will be a sizable reflection loss at zero fre-
quency. As a result of this sizable attenua-
tion L 44, at zero frequency, the transmission
characteristics of maximally flat filters of
this type have the form in Fig. 2. The maxi-
mally flat matching band extends from the
lower and upper frequencies of 3-dB attenu-
ation, w,’ and w’, respectively.!

Note that the matching band is not sym-
metrical about w,’, the frequency of maxi-
mum flatness. However, for narrow to mod-
erate bandwidths, the matching band rea-
sonably approximates a symmetrical re-
sponse in the sense that ws'=wy’. Above
w,’, the attenuation rises steeply in a manner
typical of low-pass filter structures. The
attenuation I, indicated in Fig. 2 is trans-
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1 The attenuation at wg’ and w3’ is in fact 3.0103
dB. For the cases where Ly, is less than 3.01 dB,

7
we' is undefined.
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Fig. 1, Definition of normalized prototype element values for impedance-transforming networks of low pass
filter form, (The tabulated element values are normalized so that go =1 and wp’ =1, as in Fig. 2.)
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Fig. 2. Definition of response parameters for low-pass
impedance-transforming filters. (The frequency
scale for the tabulated design is normalized so that
wp’ =1, as indicated above.)

ducer attenuation expressed in decibels, i.e.,
it is the ratio of the available power of the
generator to the power delivered to the load,
expressed in decibels.

PARAMETERS OF THE ATTENUATION
CHARACTERISTICS

The frequency scale of the networks
tabulated herein has been normalized as

indicated in Fig. 2 so that
f =1 1)

where wp’ is the upper frequency of 3-dB
attenuation, and

wh

wb’ + wa’
2

where «,’ is the arithmetic mean of the
upper and lower frequencies of 3-dB attenu-
ation.? The frequency variables and element
values used in the normalized prototype cir-
cuits will be primed to indicate that they
are normalized, and corresponding un-
primed quantities will be reserved for the
same parameters scaled to suit specific appli-
cations. With the normalization in (1) and

L

2

(5778

2 For Lag, less than 3 dB, wp,” 1s undefined.
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(2), the fractional bandwidth w is given by?®

wy — wa’
—_— (3)

W

w0 =

and the lower 3-dB frequency is given by
@

’
Ly =

1 — e

or

(%)

The attenuation
given by

Ly, at zero frequency is

- 1)2
La,, = 101ogy (Li;J— dB
Is

(6)
where 7 is again the impedance or admit-
tance transformation ratio.

In some cases it will be desired to deter-
mine the attenuation accurately over a
range of frequencies, possibly for making use
of the strong attenuation band of this type
of structure above frequency ws’. The at-
tenuation characteristic in Fig. 2 is given by
the expression

Li(w') = 10logy {1 + A[(" — wd]"} ()

where # is even and equal to the number of
reactive elements in the impedance-trans-
forming filter. The frequency wy’ at which
the attenuation is maximally flat is given by

ST an
wy = % + v _—'1;% .
The constant 4 is related to wy’ and the im-

pedance ratio 7 by

_ -
T 4

8

4 ©

(o) 2.

The fractional bandwidth, w, is given in
graphical form in Fig. 3. Note in Fig. 3 that
w is undefined for 7 less than 5.83, since in
these cases L4, is less than 3 dB. (Use of the
graph of Fig. 3 will be explained by
means of an example given later.)

3 For Lage less than 3 dB, w is undefined.
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R Table 1
'
w, V8. AN
n = NUMBER OF REACTIVE ELEMENTS [} r AND o
IN MATCHING FILTER
x
£ ,
£ LT
H N t @
2 ] rin 2 4 6 8 10
3 3 1 o
2 E_‘ = i o 1.5 0 41173 0 55785 0 60876 0 63401 0 64901
S.e - - - o — 20 0.51108 0 61064 0 64359 0 65983 0 66918
2 [ — Lt & z25 0 56721 0 63862 0 66194 0.67314 0 63028
yoe [ R 4 30 0 60500 0.65709 0 67406 0 68214 0 68743
*04L— — T _“;P 40 0.65165 0.68125 0 68996 0 69428 0 69686
02 1 e 50 0 68712 0.69718 0 70050 0 70216 0 70315
L L T o 60 0.71071 0 70891 0 70831 0 70801 0 70783
o
o 5 T 5 20 25 30 35 a0 45 50 8 0 0 74368 0 72568 0 71955 0 71646 0 71460
|MPEDANCE TRANSFORMATION RATIO, :_L OR% 10 0 0 76635 0 73755 0 72757 0 72252 0 71947
° 15 0 0 80237 0 75727 0 74106 0 73275 0 72771
. . . . . 200 0 8245 0 2 74997 7332
Fig. 3. Fractional bandwidth vs. impedance transformation ratios. 8 ol 0 749 0 73956 0 73321
250 0 84017 0 77956 0 75660 0 74465 0 73733
30 0 0 85195 0 78699 0 76186 0 74870 0 74062
40 0 0 86896 0.79821 0 76990 0 75493 0 74570
50 0 0 88002 0 80655 0 77595 0 75964 0 74954
Table 2
able Table 3
ELEMENT VALUES g, V5. r FOR n = 2 ELEMLNT VALUES g, VS r FOR o = Table 4
ELEMENT VALUES g, VS. r FOR n = o
r 8y g r gy 82 83 g4 T 8, 8, &3 &y &s 8¢
15 1.71741 1.14494 15 1.17575 157792 2.30688 0.78383 153 0 90610 1,50478 2.20776 1 53184 2,25717 0 60132
2.0 1.95664 0.97832 2.0 133862 1.41661 2 83327 0 66931 10 1 01262 143227 2.58638 1 29319 2 86453 0 50631
2.5 2.15923 0 86360 25 1 43520 1.30511 3.26278 0 58210 25 108328 1.37541 2.83408 1.13363 3.43853 0 43331
30 2 33754 6.77918 3.0 154785 1.22174 3 66522 0 51595 30 1 13083 1 12997 3.05407 1.01802 3 98991 0 37895
4.0 2.64575 0.66144 1o 1 69225 1 10269 4.41076 0 42300 40 1.21604 1 26089 3.43742 0 83936 5 04356 0.30417
5.0 2.91069 0 58214 5.0 L 80457 1 01973 5.09863 0 36091 50 1.27012 1.20972 3.76900 0 75380 6 01859 0 25522
60 3 14626 0 52438 b 0 1 89737 0 95736 5.74417 0.31623 b 0 1.323609 1 16949 4 06475 0 67746 T 01693 0.22062
8 0 3.55765 0 44471 80 2 0183 0 B6783 6.94268 0 25585 80 1.39778 1 10883 4.36216 0.57277 8.87062 017472
10 0 3 9146n 0 39117 io ¢ 2 o6l 0.80511 8.05105 0.21661 10 0 1 15193 1 0bi00 5 03129 0 50313 10 64057 0 14549
15.0 4 66326 0 31088 15 0 2 30248 0 70116 10 56247 0 15950 15 0 1 55025 0 98740 5 97114 0.39808 14 81236 0 10393
20,0 5 28623 0 26431 200 2.50209 0 A41414 12 82873 0.12810 200 1.63438 0 93666 6.75001 0.23730 18 73328 0 08172
25 0 5 83095 0 23324 25.0 2 59962 059721 it 93037 0 10708 25.0 1.09302 0 89911 7 42817 0 29713 22 47764 0 D077
300 6.32095 0.21070 300 2 Ble2d 0 56358 1o 91018 0.09387 300 171279 0 86937 8 03585 0 26786 26 08704 0 03809
10 0 7.18673 0.17967 1.0 3 00878 0 51508 20.00321 0.07522 40 0 1 82203 1.82496 9 10416 0.22760 32.90840 0 04555
50 0 7 91620 0 15892 50,0 3.16501 0.48068 24,03380 0.06332 50.0 1.88508 4 79107 10 035090 0 20072 39 50840G 0 03770
Table S
FLEMFNT YALUES g VS r FOR n - 8
T g 8; g gy £s LY 87 g3
15 0.74087 1.10995 2.05938 1 66099 240118 137201 2 11190 0 49392
2.0 0.81430 1 38835 2 23239 1.47790 2 95580 1.11610 2,77668 0 40720
25 0 86126 1.36553 2,37027 1 35009 337746 0.94811 5.41381 0 34151
30 089584 1 34524 a 48700 1 25598 3 ThTod 0 82902 1 03560 0 29862
40 0.94606 131179 2 5808k 112028 4 48113 0 67021 5 24716 0 23652
50 0 98253 1 28532 2,84053 1 02576 5 12882 0 56811 6 12657 0 19651
6.0 1.01122 1.26357 2 97786 0 95479 5 72871 0. 19631 7.58141 0 16854
8.0 1 05510 1.22030 320852 0 85308 6 82462 0 10106 9 83427 0.13180
10 0 1 08833 120283 3.40046 0.78201 7.82008 0 34005 12 02828 0.10884
15.0 114784 115526 5 78222 0 60316 10, 02244 0.25215 17.32888 0 07652
20 0 1.18981 1.12109 4 08218 0 59787 11 95741 0 20411 22 43971 0.05949
25 0 1 22245 1 09648 133352 0 54860 13.71510 0 17334 27 41201 0 04890
30.0 1 24926 1 07585 155208 0.51144 15.34328 0 15174 32 27546 0 04164
10 0 1 29196 1.04360 492395 0 45795 18 31782 0 12308 41 74756 0 03230
50 0 1 32550 1 01909 5.23531 0 42039 21.01054 0 10171 50,95444 0 02651
Table 6
ELEMENT VALLES g, VS ¢ IOK n = 10
r 5 “, g, 84 -8 g g7 £ o Ejg
15 062715 1 31379 1 86,13 1,699t 235271 1.56847 2.51899 1 21ie2 196987 0 11861 2 :
I
20 0 8114 131937  1.07212 ] 3784l 2 0570l 1.32880 3 15668 0 9gnQ0 2 638l6 0 31071 20 ' [ [ { \ |
2.5 0 TL43¢ 1 31381 2 05366 1 19074 262117 1 1681n 3.72071 0 82130 3289001 0 28381 8 : | L
3,00 0 73819 1,31032 2 11073 1 12207 315623 1 05207 426876 0 70653 3 03018 0 1622 S \
L0 0 TT290 1 29881 2 22519 1 32250 3 56714 0 89186 5.29022  (.53627 519479 0 19320 (,}, % /
a J
50079749 1 28830 2 30897 1 21083 302437 0.78487 6.24001 0 46177 b 44102 0 15952 3 2
@
50 0 8lo63 1 27899 2 37918 1 19344 424348 0 70725 7 16047 0 39652 T 6734 0 10612 8 © /
a
80 0 84558 1 20331  2.49390 1 10962 4 80309 0 60039 8 87680 0 31173 10 10589 0 10571 LI
=
100 0 86728 1 25048 2 58674 1 04865 5 28993 0.52800 10 48632 0 25867  12.50418 0 08671 & . T
1
15.0 0 90563 1 22603  2.76557 0 94609 6.31108  0.4207L 14 19116 0 18437 18 38974  0,06038 - . /
20,0 0.93237 1 20796  2.90155  0,87922 715914 0.35796 7.58407 0 14508 24 15838 0 04502 N
25 0 0,95299 1.19360 3.01289 0 83044 7.89853 0 31594  20.76068 0 12051  20,83899  0,03812
©
30 0 0 96982 1.18166  3.10799  0.79247 8 56169 0 28539 23 77389 0 10360 35 41879  0.0323 o 0z 04 06 o8 10 12 14
FREQUENCY — Gc
10,0 0 99044 1.16250 3.26626 0 73583 9 72865  0.21322 29 43279 0 08166 46 49860 0 0249l
500 101720 3.14738 3 30648 0 60449 30 74733 0 21405  34.72410 0 06793 57 36778 0 02035 Fig. 4. Transmission response for example in text

where r =20, » =4,
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For convenience, w’ in (8) is given in
tabular form in Table 1 for several values of
rand .

TaABLEs OF PROTOTYPE ELEMENT VALUES!

Tables2 to 6 (p. 694) give element values
for prototype maximally flat impedance-
transforming networks for =2, 4, 6, 8,
and 10 reactive elements. After the de-
signer has arrived at values for », W, and »,
the normalized element values can be ob-
tained from the tables. Since the networks
presented in Tables 2 through 6 are anti-
metric [3], i.e., half of the network is the
inverse of the other half, only half of the
network element values need be presented;
the remaining elements can be computed
from single equations [2]. However, for the
convenience of the reader, all element values
of the networks are presented in Tables 2
through 6.5

EXAMPLE

A numerical example will serve to dem-
onstrate the use of Tables 2 through 6
and Fig. 3, and Table 1. Suppose that a
designer desires a maximally flat impedance-
transforming network for an r=20 im-
pedance ratio, over the band from 500 to
1000 Mc/s. The required fractional band-
width is given by
=t 20— 1) (10)
Sm fotfa

which for this example gives

~2(1000 — 500)
~ 1000 + 500

= 0.667.

From Fig. 3, it is found that this value of
fractional bandwidth and impedance ratio
lies between the n=2 and #=4 curves, s0
that n=4 reactive elements are necessary.
(Two reactive elements would give a frac-
tional bandwidth of only 0.5.) This will give
an operating bandwidth somewhat larger
than is actually required (w=0.79), which
is often desirable.

Next, from Table 3, for =4 reactive
elements, the element values

g = 2.56209
g2 = 0.64144
g = 12.82873
g = 0.12810

are obtained; and from Table 1 [or (9)] wo’
is found to be 0.77012. The computed trans-
mission response of the network is graphed
in Fig. 4.

SCALING OF THE NORMALIZED DESIGN

After a designer has selected a normal-
ized design, the element values required for
a specific application are easily determined
by scaling. Let R be the desired resistance
level of one of the terminations, while R’ is

4 The derivation of the tables is given in Cristal,
et al. [4],

5 The element values were obtained by a continued
fraction expansion of the input impedance of the net-
work. Because of a loss of significant digits in the con-
tinued fraction expansion, the element values for
second half of the network as given in the tables may
be in error in the fourth decimal place. In those cases
where the error is significant the element values of the
second half of the network should be obtained from
the element values of the first half of the network by
the relationships given in Matthaei [2].

CORRESPONDENCE

the corresponding resistance of the normal-
ized design. Similarly, let o, be the radian
frequency of the upper 3-dB frequency of
the desired operating band, while «w,’=1 is
the corresponding frequency for the nor-
malized design. Then the scaled element
values are computed using

R
Ry = Ry *R,) ay
wy \ R
Ce = G (——— — 12
k k s R ( )
wy' \ R
Ly ="Li (—— — 13
" Y\ ® (13)

where R;/, C}’, and L;’ are for the normalized
design and Ry, Ci, and L; are for the scaled
design.
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Tables of Stub Admittances for
Maximally Flat Filters Using |
Shorted Quarter-Wave Stubs

Consider a symmetrical filter consisting
of lossless shorted quarter-wave stubs spaced
a quarter wavelength apart on a uniform,
lossless line. The tables given here list the
normalized characteristic stub admittances
k, necessary for a maximally flat response.

The insertion loss, when the filter is in-
serted between a generator and a load, both
of which have real admittances equal to the
characteristic admittance of the transmis-
sion line, is given by the relation

Un
i=l+Kncos [ )

Py sin? @

where # is the number of shorted stubs of
length /,

8 = 2xl/\ 2)
. E}ik_Z‘}'z)"'(kn‘*_Z)Z
[‘"_( 2 ) ®)

Manuscript received June 25, 1965. This paper
was presented in part at the IEEE G-MTT Sym-
posium, May 20, 1963.
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and where k.=Y,/1, is the norinalized
characteristic admittance of the rth stub.

For example, in a two-stub filter, n=12,
and symmetry demands that the charac-
teristic impedances of the two stubs be
equal, hence

11
B ks
The insertion loss is given by (1),
2oy It D costo
Py, 4 sin* 4

Ky = k(B + 2)]2/4.

The following tables give 10 log K, and
the required normalized characteristic ad-
mittances of the stubs for various practical
values up to ten stubs. Since the filters are
symmetrical, only the values for the first
half of the filter are tabulated.

Three-Stub Filter

10 log K3 ki1 ks

—~12.728 0.100 0 200
— 0.944 0.300 0.600
+ 5.46 0.500 1.000
+10.138 0.700 1 400
+15.56 1.000 2 000
—+21.156 1.400 2.800
+27.604 2,000 4.000
-+31.904 2.5 3.0

—+-35.563 3.0 60

Four-Stub Filter

10 log K« kr fea
-~ 5.17 0.1 0.292
-+ 3.253 0.2 0.57t
+13.329 0.4 1.109
+25.668 0.8 2.141
+35.909 1.3 3.395
+44.873 19 4.877
+56.734 30 7.568%
Five-Stub Filter
10 log K5 kL k2 kg
4+ 3.452 0.100 0.366 0.532
13.577 0.200 (.694 0.989
20.523 0.300 1.005 L.410
26.002 0.400 1.304 1.808
30.601 0.500 1.596 2.193
38.16 0.700 2.166 2.933
44 .324 0.900 2.724 3.048
54.172 1.300 3.819 5.038
66.970 2.000 5 702 7.403
77.874 2.800 7.829 10.058
Six-Stub Tilter
10 log & & k2 ks
+13.378 0.100 0.419 0 755
25.469 0.200 0.774 1.329
33.805 0.300 1.105 1 838
40.388 0.400 1.422 2.314
50.721 0.600 2,031 3.207
58.863 0.800 2.622 4.055
65.668 1.0 3.202 4.878
76.755 1.4 4.343 6.487
85.687 18 5.468 8.045
96 571 2.4 5 141 106.359
Seven-Stub Filter
10login K1 /1 k2 ks ks
24.63 01 0.4556 0 9269 1 1425
38.78 02 0.8259 L 5687 1 8656
56,24 04 1.4949 2.6514 3 1129
77.83 0.8 2.7308 4.55006 5.2396
85.77 1.0 3.3269 5.4458 6.2379
104.521 1.6 5.0774 9.0398 9.1249
125.521 26 7.9395 12,2306 13.7822




